

(f) Find the amount to which 1000 will accumulate at 6% per annum convertible half yearly for 5 years. (10+5)

(a) Find the present value and the accumulated value of a 10 year annuity immediate of *Rs.* 1000 per annum if the effective rate of interest is 5%.

(OR)

(b) Rs. 3000 is deposited at a bank if January 1st of each year from 2001 – 2009. What is the accumulated value of this fund on December 31, 2009 at **3%** annual rate of interest?

c) For a 3-year temporary life annuity-due on (30), given
$$S(x) = 1 - \frac{x}{80}, 0 \le x < 80$$
 $i = 0.05$ and

$$Y = \begin{cases} \ddot{a}_{\overline{k+1}}, k = 0, 1, 2\\ \ddot{a}_{\overline{3}}, k = 3, 4, 5 \end{cases}$$
, calculate *Var*(*Y*).

(d) Derive whole life annuity due.

(

(OR)

(e) An alumni association has 50 members, each of age x. It is assumed that all lives are independent. It is decided to contribute Rs. R to establish a fund to pay a death benefit of rupees 10,000/- to each member. Benefits are to be payable at the moment of death. It is given that $\overline{A_x} = 0.06$ and

 ${}^{2}\overline{A_{x}} = 0.01$. Using normal approximation, find *R* so that with probability 0.95 the fund will be sufficient to pay the death benefit.

(f) Prove that
$$\ddot{a}_x = \frac{1 - A_x}{d}$$
 (8+7)

5. (a) For a whole life insurance with unit benefit, calculate $\overline{P}(\overline{A_x})$ and $\operatorname{par}(L)$ with the assumptions that the force of mortality is constant $\mu = 0.04$ and force of interest $\delta = 0.05$.

(b) Calculate \vec{a}_x where it is given that $\mathbf{10}E_x = 0.40$, $\mathbf{10}\vec{a}_x = 7$ and $\mathbf{3}_{x,(10)} = 15$.

(c) For (x) you are given the following information:

- 1) The premium for a **20**-year endowment insurance of **1** is **0.0349**.
- 2) The premium for a **20** -year pure-endowment of **1** is **0.0230**.
- The premium for a 20-year deferred whole life annuity-due of 1 per year is
 0.2087 and is paid for 20 years.
- 4) All premiums are fully discrete annual benefit premiums.
- 5) *i* = 0.05.

Calculate the premium for a **20**—payment whole life insurance of **1**.

(d) If
$$_{k|}q_x = c(0.96)^{k+1}$$
, $k = 0, 1, 2, ...$ where c=0.04/0.96 and i=0.06, calculate P_x and Var(L).

(7+8)

(OR)

- (e) Given (i) $\|\vec{u}\|_{\vec{u}_{x}} = 4.0$, (ii) $\ddot{a}_{x} = 10.0$ (iii) $\ddot{S}_{x,\vec{10}} = 15.0$, (iv) $\vartheta = 0.94$. Calculate $A'_{x,\vec{10}}$.
- (f) For a fully continuous whole life insurance 1 on (x). Calculate $\overline{P}(\overline{A}_x)$ given the following:
 - (i) Premiums are determine using the equivalence principle.

(ii)
$$\frac{var[2]}{var[4]} = 0.36$$
 and
(iii) $\bar{a}_x = 10.$ (5+10)

(10+5)

(5)

(5)