Date: 27-04-2016

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
 M.Sc. DEGREE EXAMINATION - MATHEMATICS SECOND SEMESTER - APRIL 2016
 MT 2962 - ACTUARIAL MATHEMATICS

Time: 01:00-04:00

Answer ALL Questions:

(5 x20=100 marks)

1. (a) Briefly explain the history and origin of insurance.
(OR)
(b) Define and derive an expression for deferred probability.
(c) If $S(x)=1-\frac{x^{x}}{100}, 0 \leq x \leq 10$. Find the distribution of $K(4)$. Also obtain its expectation \boldsymbol{e}_{4}.
(d) Prove that $\mu_{x}=\frac{f(x)}{s(x)}$ and $S(x)=\exp \left(-\int_{0}^{x} \mu_{z} d t\right)$.
(OR)
(e) For the current type of refrigerator, it is given that $5(x)=\left\{\begin{array}{rl}\frac{1}{x} & x \leq 0 \\ 1-\frac{x}{w} & 0 \leq x \leq w \\ 0 & x>w\end{array}\right\}$ and $\varepsilon_{0}{ }^{0}=20$. For a proposed new type, with the same w, the new survival function is $S^{*}(x)=\left\{\begin{array}{cc}1 & 0 \leq x \leq w \\ \frac{w-x}{w-5} & 5<x \leq w\end{array}\right\}$. Calculate the increase in life expectancy at time 0.
2. (a) If $S(x)=1-\frac{x^{2}}{100}, 0 \leq x \leq 100$ and $l_{0}=1,00,000$, find $l_{1}, l_{\frac{1}{2}}$ and $l_{E .5}$. (OR)
(b) Derive the relation l_{x} and μ_{x}.
(c) Derive the expression for $l_{x}, d_{x}, L_{x}, T_{x}, e_{x}$ and tabulate the values of $l_{x}, d_{x}, L_{x}, T_{x}, e_{x}$ where $q_{\mathrm{D}}=0.3, q_{1}=0.1, q_{2}=0.2, q_{\mathrm{s}}=0.4, q_{4}=0.7 \mathrm{and} q_{5}=1$ taking $\boldsymbol{i}_{0}=100$.
(d) Explain about assumption for fractional ages.
(OR)
(e) Given that $p_{ \pm 0}=0.999473$, calculate ${ }_{0.4} q_{40.2}$ under the assumption of under distribution of death.
(f) Given $q_{60}=0.3$ and $q_{61}=0.4$, find the probability that (60.5) will die between (60.5) and (61.5) under the assumption of uniformity of deaths in the unit interval.
3. (a) Find the amount of Rs $10,000 /-$ after 10 years if the rate of interest is 5% and 5% per annum payable quarterly.
(OR)
(b) Find the amount to which Rs 1, 000/- will accumulate at 6% per annum convertible half yearly for 5 years. In how many will a sum of money double itself at compound interest with effective rate $=0.005$?
(c) Give an account of whole life insurance policy.
(d) Assume that each of 100 independent lives is of age x, is subject to a constant force of mortality $\mu=0.04$ and is insured for a death benefit amount of 10 units, payable at the moment of death. The benefit payments are to be withdrawn from an investment fund earning interest at a rate $\delta=0.06$. Calculate the minimum amount to be collected at $\mathrm{t}=0$, so that the probability is approximately 0.95 that sufficient funds will be on hand to withdraw the benefit payment at the death of each individual.
(5+10)
(OR)
(e) Derive the (i) effective rate of interest for both Simple and Compound Interest and (ii) discount in life insurance.
(f) Find the amount to which 1000 will accumulate at 6% per annum convertible half yearly for 5 years.
4. (a) Find the present value and the accumulated value of a 10 year annuity immediate of $\boldsymbol{R s} .1000$ per annum if the effective rate of interest is 5%.
(OR)
(b) Rs. 3000 is deposited at a bank if January $1^{\text {st }}$ of each year from 2001 - 2009. What is the accumulated value of this fund on December 31, 2009 at 3% annual rate of interest?
(c) For a 3-year temporary life annuity-due on (30), given $S(x)=1-\frac{x}{80}, 0 \leq x<80 i=0.05$ and $Y=\left\{\begin{array}{l}\ddot{a}_{\overline{k+1}}, k=0,1,2 \\ \ddot{a}_{\overline{3}}, \quad k=3,4,5\end{array}\right.$, calculate $\operatorname{Var}(Y)$.
(d) Derive whole life annuity due.
(OR)
(e) An alumni association has 50 members, each of age x. It is assumed that all lives are independent. It is decided to contribute Rs. R to establish a fund to pay a death benefit of rupees $10,000 /-$ to each member. Benefits are to be payable at the moment of death. It is given that $\overline{A_{x}}=0.06$ and ${ }^{2} \overline{A_{x}}=0.01$. Using normal approximation, find R so that with probability 0.95 the fund will be sufficient to pay the death benefit.
(f) Prove that $\ddot{a}_{x}=\frac{1-A_{x}}{d}$
5. (a) For a whole life insurance with unit benefit, calculate $\bar{P}\left(\bar{A}_{x}\right)$ and vaar (L) with the assumptions that the force of mortality is constant $\mu=0.04$ and force of interest $\delta=0.06$.
(OR)
(b) Calculate $\ddot{a}_{x x}$ where it is given that ${ }_{10} E_{x}=0.40,{ }_{\mathrm{TV} \mid} \ddot{a}_{x}=7$ and $\dot{S}_{x: I \mathbb{T V}}=15$.
(c) For (x) you are given the following information:
1) The premium for a 20 -year endowment insurance of 1 is 0.0349 .
2) The premium for a 20 -year pure-endowment of 1 is 0.0230 .
3) The premium for a 20 -year deferred whole life annuity-due of 1 per year is 0.2087 and is paid for 20 years.
4) All premiums are fully discrete annual benefit premiums.
5) $i=0.05$.

Calculate the premium for a 20 -payment whole life insurance of 1 .
(d) If ${ }_{k \mid} q_{x}=c(0.96)^{k+1}, k=0,1,2, \ldots$ where $\mathrm{c}=0.04 / 0.96$ and $\mathrm{i}=0.06$, calculate P_{x} and $\operatorname{Var}(\mathrm{L})$.
(OR)
(e) Given (i) ${ }_{T \pi} \ddot{a}_{x}=4.0$, (ii) $\ddot{u}_{x}=10.0$ (iii) $\dot{S}_{x: T 01}=15.0$, (iv) $\hat{v}=0.94$. Calculate $A_{x: I 0}^{*}$.
(f) For a fully continuous whole life insurance 1 on (x). Calculate $\bar{P}\left(\bar{A}_{x}\right)$ given the following:
(i) Premiums are determine using the equivalence principle.
(ii) $\frac{v a r}{v a r[z]}=0.36$ and
(iii) $\bar{u}_{x}=10$.

